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A semi-implicit finite volume implementation of the CSF method
for treating surface tension in interfacial flows
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SUMMARY

We present an implementation of Hysing’s (Int. J. Numer. Meth. Fluids 2006; 51:659–672) semi-implicit
method for treating surface tension, for finite volume models of interfacial flows. Using this method, the
surface tension timestep restriction, which is often very stringent, can be exceeded by at least a factor
of 5 without destabilizing the solution. The surface tension force in this method consists of an explicit
part, which is the regular continuum surface force, and an implicit part which represents the diffusion
of velocities induced by surface tension on fluids interfaces. The surface tension force is applied to
the velocity field by solving a system of equations iteratively. Since the equations are solved only near
interfaces, the computational time spent on the iterative procedure is insignificant. Copyright q 2008 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The continuum surface force (CSF) method [1], developed more than a decade ago, has been
widely used as a model for surface tension forces in interfacial flow solvers. The CSF model is
explicit, and thus for numerical stability, the timestep size �t must satisfy the following condition:

�t��tST=
√

�(�x)3

2��
(1)

where � is the average density of two phases, � is the coefficient of surface tension, and �x is the
mesh size. If the viscous and convective effects are also modeled by an explicit approach, then �t
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must also satisfy the following conditions:

�t��tvis. = �(�x)2

2�
(2)

where � is fluid viscosity, and

�t��tCFL= �x

umax
(3)

which is the Courant–Friedrichs–Lewy (CFL) condition, where umax represents some maximum
velocity.

Condition (1) often imposes a stringent constraint on �t , especially if surface tension is a
dominant force, e.g. when the Weber number We=�Lu2/�<1 or the capillary number Ca=
�u/�<1, where L and u are the characteristic length and velocity, respectively. To compare these
timestep restrictions, consider a 100�m water droplet moving at 1m/s, discretized by 20 cells per
radius (�x=2.5�m, We=1.4, and Ca=0.014). The timestep restrictions are

�tST=2.5×10−7 s

�tvis. =8×10−6 s

�tCFL=2.5×10−6 s

As we see, the timestep restriction due to surface tension is an order of magnitude smaller than
the others. If this restriction could be removed, or at least mitigated, then time marching could be
done at larger timesteps, and simulation runtimes would be significantly reduced. Of course, we
should note that by using a large timestep, one may not be able to accurately capture and resolve
all temporal attributes of a problem. For example, if the timestep were to approach the oscillation
period of a drop, then obviously the solver would not capture those oscillations properly.

Hysing [2] recently reported a semi-implicit approach to the CSF model, where �tST can be
exceeded by at least a factor of 10. He presented his method in a finite element context and incor-
porated it into an extended version of the FEATFLOW [3] solver, where the level set (LS) method
is used to represent fluid interfaces. An equally common group of flow solvers are finite volume
models on Cartesian grids that employ the volume-of-fluid (VOF) method for interfacial flows (e.g.
RIPPLE [4], SURFER [5], and Gerris [6]). Applying Hysing’s model would be of great benefit
for such solvers, as computational time could be reduced significantly; however, the extension
of this method is not straightforward. In this paper, we present an implementation of Hysing’s
model for a VOF-based finite volume method; although, this implementation could also be applied
to finite volume models that employ other interface tracking techniques, such as the LS method.

2. MATHEMATICAL FUNDAMENTALS

Consider a two-phase flow where the fluids are immiscible and incompressible. The governing
equations are conservation of mass and momentum:

∇ ·U=0 (4)

�(�U)

�t
+∇ ·(�UU)=−∇ p+∇ ·(�(∇U+∇TU))+FB +FST (5)
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where U denotes the velocity, p the pressure, FB any body forces such as gravity, and FST the
surface tension force.

Using a first-order scheme to discretize the temporal derivative in Equation (5), and employing
a two-step projection method, we solve Equation (5) by splitting it into predictor and corrector
steps:

�n+1U∗−�nUn

�t
=−∇ ·(�UU)n+∇ ·(�(∇U+∇TU))n+Fn

B+Fn+1
ST (6)

�n+1Un+1−�n+1U∗

�t
=−∇ pn+1 (7)

where superscripts n and n+1 denote the current and next time levels, and ∗ represents an interim
level.

In the CSF formulation [1],
FST=��n̂�� (8)

where � denotes an interface between two fluids, � the interface curvature, n̂ a unit normal vector
to �, and �� the Dirac delta function which is used to represent �.

Following [2], an identity mapping, denoted as id�, is defined on � as

id� =x|� =x��

where x denotes the position vector. From differential geometry,

�id� =�n̂ (9)

where � is the tangential (or surface) Laplacian operator, also known as the Laplace–Beltrami
operator (see Appendix A). Thus, FST becomes

FST=�(�id�)�� (10)

and the surface tension term in Equation (5) can be expressed as

Fn+1
ST =�(�idn+1

� )�� (11)

where idn+1
� denotes the interface location at time n+1.

Following [2, 7], a backward Euler scheme can be used to approximate idn+1
� as

idn+1
� = idn�+�tUn+1 (12)

which is analogous to

x|n+1
� =x|n�+�tUn+1 (13)

Substituting Equation (12) into Equation (11) and rearranging, we obtain

Fn+1
ST =�(�n̂)n��+��t (�Un+1)�� (14)
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Before proceeding, note that idn+1
� can also be approximated via the Crank–Nicolson scheme

idn+1
� = idn�+ �t

2
(Un+Un+1) (15)

which then yields an alternative to Equation (14)

Fn+1
ST =�(�n̂)n��+ ��t

2
(�Un+�Un+1)�� (16)

We will consider both Equations (14) and (16) in what follows. The term �(�n̂)n�� in Equations (14)
and (16) is the CSF force (see Equation (8)). Since �(�n̂)n�� is evaluated at time level n, this
approach is semi-implicit; therefore, there is a limit on the maximum possible �t . It will be
shown in Section 4 that the maximum �t is at least five times �tST. From here on, however, we
will simply refer to this approach as the implicit method for ease of presentation. The additional
term in Equations (14) and (16) (see Appendix A for �U) appears as the diffusion of velocities
induced by the surface tension force on an interface. Note that as �t tends to zero, the diffusive
term vanishes and the implicit method approaches the familiar explicit implementation of the CSF
model.

We will substitute both forms of Fn+1
ST , Equations (14) and (16), into Equation (6), but first we

rewrite Equation (6) as

�n+1U∗ = �̃U+�tFn+1
ST (17)

where

�̃U=�nUn+�t[−∇ ·(�UU)n+∇ ·(�(∇U+∇TU))n+Fn
B] (18)

Now substituting Equation (14) into Equation (17), we have

�n+1U∗ = �̃U+��t (�n̂)n��+�(�t)2(�U∗)�� (19)

In two-dimensional (2D) Cartesian coordinates, where we define U=uî+v ĵ and the unit normal
to � as n̂=n1î+n2 ĵ , and using Equation (A11) for �U∗, we obtain the following equation for
applying surface tension to the u-component of velocity:

�n+1u∗ = �̃u+��t (�n1)
n��+�(�t)2[n22u∗

xx +n21u
∗
yy−2n1n2u

∗
xy

−(n1u
∗
x +n2u

∗
y)(n

2
2n1x +n21n2y−n1n2(n1y+n2x ))]�� (20)

where �̃u is the x-component of Equation (18), and the subscripts x and y denote derivatives with
respect to x and y, respectively. Similarly, for the v-component of U∗, we have

�n+1v∗ = �̃v+��t (�n2)
n��+�(�t)2[n22v∗

xx +n21v
∗
yy−2n1n2v

∗
xy

−(n1v
∗
x +n2v

∗
y)(n

2
2n1x +n21n2y−n1n2(n1y+n2x ))]�� (21)

These equations yield u∗ and v∗ at each timestep by solving systems of algebraic equations
(presented next).
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Finally, a similar equation for U∗ can be obtained by substituting Equation (16) (the Crank–
Nicolson scheme) into Equation (17)

�n+1U∗ = �̃U+��t (�n̂)n��+ �(�t)2

2
(�Un+�U∗)�� (22)

which can also be expressed in terms of u∗ and v∗, similar to Equations (20) and (21).

3. NUMERICAL METHODOLOGY

3.1. Solving the flow equations

Using a two-step projection method, Equations (4) and (5) are solved in 2D Cartesian coordinates.
In the predictor step (Equation (6)), an interim velocity U∗ is calculated by considering convective,
viscous terms, surface tension and body forces. Then, applying Equation (4) toUn+1 in the corrector
step (Equation (7)) yields an implicit equation for pressure

1

�t
∇ ·(−�n+1U∗)=−∇2 pn+1 (23)

At each timestep, Equation (23) is solved iteratively for a pressure field that is then used to evaluate
Un+1 via Equation (7).

A co-located arrangement of variables was used with pressure and velocities defined at cell
centers. By incorporating a consistent mass and momentum advection scheme [8], the flow model
can simulate high-density ratio flows. In addition to the implicit implementation of surface tension
presented in Section 2, we also implemented the original [1] and consistent explicit CSF [9] models
for comparison.

In the explicit models, surface tension forces are calculated at cell faces, and then averaged to
cell centers. In the implicit model, however, the forces are calculated and applied at cell centers
via Equations (20) and (21). These equations need to be solved only near fluid interfaces, where
�� �=0 (see Section 3.3 for discretization of ��). Treating fluids across an interface uniformly,
we discretized the derivatives in Equations (20) and (21) via a second-order central differencing
scheme, without explicitly enforcing any jump condition. This resulted in an algebraic system of
equations with nine diagonals for each velocity component. In this system, the coefficient matrix
is diagonally dominant because fluid density appears in the main diagonal. The matrix depends
only on the topology of an interface, �t , and �; the orientation of the flow field relative to the
interface does not influence the matrix. The explicit part of the surface tension force and �̃U (see
Equations (19) and (22)) are source terms in these systems of equations. We used LASPack [10]
to solve the systems iteratively at each timestep.

3.2. Calculating interface dynamics

We employed the ‘coupled LS and VOF’ (CLSVOF) method of Son and Hur [11] for calculating
interface dynamics, because of the relative ease of implementation compared with other CLSVOF
methods. In this method, the interface is represented by a smooth LS function [12] denoted by �.
For a domain �, � is defined as a signed distance function to the boundary (interface) �

|�(x)|=min(|x−xI|) for all xI∈� (24)
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implying that �(x)=0 on �. Choosing � to be positive inside �, we then have

�(x)=

⎧⎪⎨⎪⎩
>0, x∈�

0, x∈�

<0, x /∈�

(25)

The motion of the interface is defined by the following advection equation:

��

�t
+U ·∇�=0 (26)

When � is advected, the �=0 contour moves at the correct interface velocity; however, contours
of � �=0 do not necessarily remain as distance functions. This can result in an irregular � field that
in turn leads to problems with mass conservation. To rectify this problem reinitialization methods
have been developed, which restore � to a signed distance function without changing the �=0
contour.

To reinitialize � in the CLSVOF method, the LS function is coupled with the VOF function.
The VOF function, a scalar color function denoted by f , is defined as

f (x)=
{
1, x∈fluid1

0, x∈fluid2
(27)

to represent fluid 1 in a two-fluid system. The VOF function is advected by

� f

�t
+U ·∇ f =0 (28)

After advecting � and f from time n to n+1, the interface, approximated as piecewise linear, is
then reconstructed from f n+1 using the interface normal vectors calculated from �n+1. � is then
reinitialized by calculating the distance between any cell center (where � is defined) and the VOF
interface.

The CLSVOFmethod achieves exact volume conservation if it is based on an exactly conservative
VOF approach. Here, the VOF function is advected by the method of Youngs [13], which is volume
conserving. For the LS function, the spatial derivatives in Equation (26) were discretized using a
second-order accurate, essentially nonoscillatory scheme and the forward Euler scheme was used
to discretize the temporal derivative.

The unit normal vector and curvature at any point on the interface are calculated from � via

n̂= ∇�

|∇�| (29)

and

�=−∇ ·
( ∇�

|∇�|
)

(30)

3.3. Discretization of the Dirac delta function

As we will show in Section 4, the choice of discretization of the Dirac delta function �� has a
significant impact on the accuracy of the results. The implicit surface tension model requires a
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smooth �� to minimize errors when Equation (19) or (22) is integrated over a control volume. To
construct the discretized delta function, denoted by �	, we used the distance function � available
using the CLSVOF method. If using only the VOF method, one could utilize the method described
in [14] to construct � from the volume fractions. We then define �	 as

�	(�)=
⎧⎨⎩
1

	
f (�/	), |�|�	

0, |�|>	
(31)

where f is a kernel function and 	=m�x , where m is a positive number that determines the
support of �	 (�	 becomes smoother with increasing m). We will examine the following linear,
cosine and polynomial kernel functions [2] with various values of m:

flinear(x)=1−|x | (32)

fcos(x)= 1
2 (1+cos(�x)) (33)

fpoly(x)= 35
32 (1−3x2+3x4−x6) (34)

For the explicit models, we used a sharp delta function evaluated as the gradient of the volume
fractions [9].

4. RESULTS

The remainder of this paper presents a comparison between the implicit surface tension model
and two explicit models: the original [1] and consistent [9] CSF. The results of the consistent
model are considered as benchmarks because of a more accurate representation of surface tension
forces, which is due to the consistent treatment of surface tension and pressure. Unless otherwise
mentioned, the results of the implicit model were obtained by using Equation (14) (backward Euler
scheme) with �	 evaluated with the fcos kernel and m=3.5. We adopted test cases from [2], but
changed parameters such as viscosity (which is modeled explicitly here) to obtain a wide range
of �t larger than �tST and smaller than other timestep restrictions. The parameters are all in SI
units.

4.1. Static drop in the absence of gravity

First, we consider a circular static drop of radius R in zero gravity. We will present the magnitudes of
dimensionless spurious currents U�/�, which are velocities induced due to discretization errors of
the surface tension term, and the pressure jump across the interface evaluated in three ways: �ptotal
denotes the difference between average pressures in r�R and r>R regions; �ppartial represents
the difference between average pressures in r�R/2 and r>3R/2 regions (this avoids the transition
region near the interface); �pmax is the difference between the maximum and minimum pressures
in the domain.

Consider a drop of fluid 1 with R=0.25 centered within a 1×1 domain otherwise filled with
fluid 2. �1=�2=103, �1=�2=5×10−2, �=0.1. �x=�y= 1

128 . This corresponds to an Ohne-
sorge number Oh=�/

√
2R��=7×10−3. According to the surface tension and viscous timestep

restrictions (Equations (1) and (2)), �tST=0.03 and �tvis. =0.61.
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Table I. Spurious currents, �p at t=90, and time-averaged �p, for a static drop of radius 0.25 centered
within a 1×1 domain, using the original [1] and consistent explicit CSF [9] models.

|U�/�|max |U�/�|ave. �ppartial �ptotal �pmax �ppartial

Original CSF 1.43×10−3 2.1×10−5 0.4008 0.3964 0.5677 0.3975
Consistent CSF 9.8×10−5 4.0×10−6 0.4008 0.3964 0.4088 0.3990

�x=�y= 1
128 , �1=�2=103, �1=�2=5×10−2, �=0.1, �t=0.015, �pexact=0.4.

Table II. Spurious currents, �p at t=90, and time-averaged �p, for the static drop test.

�t |U�/�|max |U�/�|ave. �ppartial �ptotal �pmax �ppartial

0.015 3.85×10−4 2.30×10−5 0.4073 0.3908 0.4683 0.3999
0.03 4.18×10−4 2.62×10−5 0.4162 0.3987 0.4469 0.3996
0.06 5.25×10−4 3.65×10−5 0.4025 0.3864 0.4193 0.3991
0.12 9.70×10−4 5.95×10−5 0.3959 0.3837 0.4014 0.3978
0.18 1.41×10−3 8.20×10−5 0.3962 0.3804 0.4009 0.3959

Results are for the implicit model of Equation (14) and fcos with m=3.5, at different �t . �tST=0.03,
�pexact=0.4.

We first used the explicit models and ran the simulations to t=90 with �t=0.015. Table I shows
the maximum and average magnitudes of spurious currents and the pressure jumps at t=90, as
well as a time-averaged pressure jump denoted by a bar, where �pexact=0.4. The consistent CSF
model yields much smaller spurious currents, but the pressure jumps predicted by the original and
consistent CSF models are the same except for �pmax. We ran the simulations further to t=900,
and the results (not presented) are more or less the same as the results at t=90.

Note that when the explicit models are used it is sometimes possible to obtain stable solutions
even when the timestep is 2�tST. In fact, the way the �tST constraint was devised [1] allows for
this. We successfully ran the above test at �t=2�tST using the consistent CSF model. However,
for �t>2�tST, the explicit surface tension models failed, as expected. For example, when the
original and consistent CSF models were run at �t=6�tST, the solutions became unstable after
only eight and four timesteps, respectively, as velocities induced by surface tension violated the
CFL condition.

Next, we ran the same simulation but with the implicit model; this time, however, we tried a
range of timesteps �t=0.015, 0.03, 0.06, 0.12, and 0.18, corresponding to �t�6�tST. Solutions
were stable for all �t . The results are presented in Table II.

Comparing the results at �t=0.015 with those of the explicit models (Table I), the implicit
model yields maximum spurious currents between those of the two explicit models (the consistent
CSF model produces the smallest spurious currents). However, the average spurious currents of
the implicit model are greater than those of the original CSF model. This can be explained by
considering Figure 1, which shows the spurious currents induced in the flow at t=90, for the
different surface tension models. When the original CSF model is used, the spurious currents,
shown in Figure 1(c), are very large on the interface but quite small off the interface. The implicit
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Figure 1. Spurious currents at t=90, for a static drop of radius 0.25 centered within a 1×1 domain.
�x=�y= 1

128 , �1=�2=103, �1=�2=5×10−2, �=0.1. Implicit results are of Equation (14) using fcos
with m=3.5, at (a) �t=0.18 and (b) �t=0.015. Explicit results are of (c) the original CSF model and

(d) the consistent CSF model (velocities magnified six times), with �t=0.015.

model (Figures 1(a) and (b)), on the other hand, yields currents that are more uniformly distributed
throughout the domain. This may be because the support of the delta function is larger in the
implicit model than in the explicit model. Thus, the surface tension force is distributed over a
larger region around the interface, which yields greater spurious currents in that area. The diffusive
operator, however, tends to align the surface tension-induced velocities along the interface. Figure
1(d) shows the consistent CSF model results magnified six times; as can be seen, spurious currents
are larger on the interface and inside the drop, than outside.

Regarding runtime, using the original CSF, consistent CSF, and the implicit model, simulations
ran for 175, 170, and 177min, respectively, at �t=0.015, suggesting that the time spent on the
iterative solution of Equation (19) is insignificant. This is because these equations are solved only
in cells near an interface, where surface tension effects are present. The computation time was
only 19min using the implicit model at �t=0.18.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:1093–1110
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Table III. Spurious currents, �p at t=90, and time-averaged �p, for the static drop test.

�t |U�/�|max |U�/�|ave. �ppartial �ptotal �pmax �ppartial

0.015 3.57×10−4 2.14×10−5 0.3846 0.3707 0.4618 0.3999
0.03 3.41×10−4 2.11×10−5 0.4245 0.4062 0.4573 0.3996
0.06 5.20×10−4 3.70×10−5 0.3993 0.3837 0.4068 0.3992
0.12 9.10×10−4 6.00×10−5 0.3978 0.3800 0.4025 0.3977
0.18 1.42×10−3 8.75×10−5 0.3980 0.3823 0.4028 0.3981

Results are for the implicit model of Equation (16) and fcos with m=3.5, at different �t . �tST=0.03,
�pexact=0.4.

Table IV. Spurious currents, �p at t=90, and time-averaged �p, for the static drop test.

�t |U�/�|max |U�/�|ave. �ppartial �ptotal �pmax �ppartial

0.015 1.39×10−3 1.15×10−4 0.3794 0.3759 0.6316 0.3959
0.03 1.36×10−3 1.37×10−4 0.4060 0.4013 0.5628 0.3938
0.06 1.27×10−3 1.49×10−4 0.3864 0.3812 0.5126 0.3801
0.12 1.30×10−3 1.12×10−4 0.3689 0.3625 0.4524 0.3533
0.18 1.07×10−3 5.80×10−5 0.3226 0.3161 0.3687 0.3230

Results are for the implicit model of Equation (14) and fcos with m=1.5, at different �t . �tST=0.03,
�pexact=0.4.

Next, we evaluated the implicit model of Equation (16) (the Crank–Nicolson scheme) with
the same delta function. The results, presented in Table III, are very close to those of Equation
(14) (see Table II); the magnitude of spurious currents and the pressure jumps are generally the
same. As the results using Equation (16) are not significantly different from those using Equation
(14), in this test (and others), we only present results of the Euler scheme (Equation (14)) from
here on.

We next examined the effect of varying the support of the Dirac delta function. Using the
implicit model and fcos, we tried m=1.5 (a 3-cell wide delta function) and ran the same test. The
results are presented in Table IV; as can be seen, the spurious currents are larger compared with
the smoother delta function (m=3.5, see Table II). Furthermore, the pressure jumps decrease as
�t increases. We observed [15] the same behavior with a sharp delta function constructed from
the volume fractions, where the loss in pressure jump was less severe when the Crank–Nicolson
scheme was used.

The loss in pressure jump occurs because of errors that result from integrating the sharp delta
function (Equation (19) or (22)) over control volumes. In our finite volume implementation,
similar to other quantities such as pressure, the delta function is assumed to be constant across
a cell (control volume), and is represented by the value at the cell center. For a sharply varying
function, this assumption induces large errors that can be reduced by using a smoother delta
function.

Finally, we studied the performance of the other kernels (linear equation (32) and polynomial
equation (34)), with m=3.5. Table V shows the results; compared with the cosine kernel (Table II),
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Table V. Spurious currents, �p at t=90, and time-averaged �p, for the static drop test.

�t |U�/�|max |U�/�|ave. �ppartial �ptotal �pmax �ppartial

(a)
0.015 4.88×10−4 2.59×10−5 0.3700 0.3554 0.4436 0.3991
0.03 4.56×10−4 2.86×10−5 0.3990 0.3816 0.4424 0.3987
0.06 3.24×10−4 2.39×10−5 0.3984 0.3808 0.4086 0.3983
0.12 2.43×10−4 2.48×10−5 0.3974 0.3796 0.4033 0.3973
0.18 2.01×10−4 2.56×10−5 0.3960 0.3781 0.4010 0.3959

(b)
0.015 4.05×10−4 2.30×10−5 0.3991 0.3850 0.4498 0.4001
0.03 4.54×10−4 2.66×10−5 0.4047 0.3899 0.4383 0.3998
0.06 5.70×10−4 3.88×10−5 0.4086 0.3936 0.4354 0.3990
0.12 1.08×10−3 6.35×10−5 0.3981 0.3837 0.4044 0.3972
0.18 2.94×10−4 3.70×10−5 0.3944 0.3800 0.3999 0.3947

Results are for the implicit surface tension model of Equation (14) using (a) flinear and (b) fpoly, with m=3.5,
at different �t . �tST=0.03, �pexact=0.4.

the different kernels generally yield similar results; using the linear kernel, however, the magnitude
of spurious currents is slightly smaller, when �t>�tST.

4.2. Surface tension-driven oscillation

Next, we present the results of the oscillation of a drop due to surface tension effects. The initial
geometry is an ellipse with semimajor axes of 0.3 and 0.2 in the x- and y-directions, respectively.
We ran the simulation to t=1000; the same timestep restrictions as presented in Section 4.1 apply
here, as the fluid properties and mesh resolution are the same. We studied four cases: the implicit
and two explicit (original and consistent CSF) models at �t=0.015, and the implicit model at
�t=0.18=6�tST.

The results of the implicit model with �t=0.18 are presented in Figure 2. The results are stable
and the oscillations cease at t=300. Figure 3 depicts the history of the total kinetic energy of the
flow, measured over the whole domain, for 0�t�300, for the different models. The amplitude and
frequency of the oscillations are quite similar when the explicit models are used; the implicit model
with �t=0.18 yields similar results in terms of the amplitude of oscillations, but the frequency
differs very slightly for t>100. For �t=0.015, the frequency of the implicit results matches the
frequency of the explicit results; however, we observe a slightly larger amplitude in the results of
the implicit model. The small differences between the results of the implicit and explicit models
may be due to the different representation of the surface tension force, which results in a different
balance between surface tension and pressure forces. As can be seen in Figure 3, the amplitudes
of the consistent CSF model are also slightly greater than those of the original CSF model for
t>100; this is due to a more accurate representation of surface tension forces in the consistent
model.

Figure 4 shows the history of the viscous dissipation �=(�/2)(�ui/�x j +�u j/�xi )2 in the
flow, for the implicit result at �t=0.18, for 0�t�300. The frequency of oscillation in Figure 4 is
similar to that of the total kinetic energy in Figure 3.
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Figure 2. Interface shape as a drop oscillates due to surface tension effects. �t=0.18,
�x=�y= 1

128 , �1=�2=103, �1=�2=5×10−2, �=0.1, �tST=0.03. The implicit surface
tension model of Equation (14) is used with fcos and m=3.5.

4.3. Buoyancy-driven flow

Finally, we consider a bubble of fluid 1 with radius R=0.1 positioned at (0.5,0.5) in a 1×2 container
otherwise filled with fluid 2. �1=500, �2=103, �1=�2=10−2, �=0.1, g=−9.81×10−3, and
�x=�y= 1

128 . This corresponds to Oh1=3×10−3 and a Bond number Bo1=4�1gR
2/�=1.96.

The surface tension and viscous timestep restrictions are �tST=0.024 and �tvis. =1.53. Note
that gravity was assigned a small value here to obtain a wide range of �t , larger than �tST,
but small enough to ensure CFL numbers less than unity even for the largest buoyancy-induced
velocities.

We simulated the buoyancy-driven motion of the bubble using the implicit and explicit models.
Figure 5(a) illustrates bubble shapes at t=0, 15, and 30 obtained by the implicit model with
�t=0.12=5�tST; Figure 5 also shows results with �t=0.012 using the implicit and explicit
models. The results are quite similar in terms of bubble height and shape. To compare, all of the
bubble shapes at t=30 are superimposed in Figure 6. Note that the interface shapes predicted
by the explicit models differ; this is due to the more accurate treatment of surface tension in
the consistent CSF model. Results of the implicit model at �t=0.012 are close to those of the
original CSF model. Using �t=0.12, however, the height of the bubble is slightly above that
obtained using a smaller timestep, and the bubble is less deformed. The differences are due to the
transient nature of the problem; with �t=0.12, the implicit model captures temporal attributes
less accurately because �t is large. As we decrease �t , results of the implicit model become closer
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Figure 3. The history of the total kinetic energy (TKE) in an oscillating drop. Results are
of the original and consistent CSF models, and of the implicit model, all at �t=0.015,

and of the implicit model at �t=0.18; �tST=0.03.

Figure 4. The history of the viscous dissipation (VD) in an oscillating drop. Results are
of the implicit model with �t=0.18; �tST=0.03.
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Figure 5. Interface shape as a bubble (fluid 1) rises in fluid 2 due to buoyancy forces, at t=0, 15, and
30. �1=500, �2=1000, �1=�2=10−2, �=0.1, g=−9.81×10−3, �x=�y= 1

128 , �tST=0.024. Implicit
results are based on Equation (14), with fcos and m=3.5, at (a) �t=0.12, and (b) �t=0.012. Explicit

results are of the (c) original and (d) consistent CSF models with �t=0.012.

to those of the explicit models. The differences become insignificant as we refine the mesh, where
a much smaller �t is required.

5. SUMMARY

The surface tension timestep restriction associated with the explicit CSF model is stringent, espe-
cially when surface tension is a dominant force. Hysing [2] reported a semi-implicit CSF model
in a finite element context that mitigates the timestep restriction significantly. Here, we presented
an implementation of Hysing’s model for interfacial flows modeled by a finite volume method.
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Figure 6. Bubble shape at t=30 obtained from the original and consistent CSF models
with �t=0.012, and from the implicit model of Equation (14), with fcos and m=3.5,

with �t=0.012 and �t=0.12; �tST=0.024.

In this implementation, the surface tension force consists of an explicit part, which is the regular
CSF, and an implicit part which represents the diffusion of velocities induced by surface tension
on fluids interfaces. The solution of velocities induced by surface tension involves an iterative
procedure for cells near an interface; the computational time spent on the iterative procedure is
insignificant. Results show that using the implicit model, the timestep restriction due to surface
tension can be exceeded by at least a factor of 5, without destabilizing the numerical solution. This
would significantly reduce simulation runtimes by time marching at larger timesteps. The results
of the implicit model at large timesteps are very similar to those of the explicit models. Similar to
[2], because of the explicit part of the surface tension force, the maximum �t possible is limited.

APPENDIX A

A.1. Tangential gradient

The tangential gradient of a scalar function f is defined as

∇ f =∇ f −(n̂ ·∇ f )n̂ (A1)

where ∇ denotes the regular gradient, and n̂ is the unit normal vector to the surface on which the
tangential gradient is calculated. The tangential gradient is then the directional derivative of f in
the direction tangent to a surface.
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In 2D Cartesian coordinates, where f = f (x, y) and n̂=n1î+n2 ĵ , the tangential gradient is

∇ f =( fx î+ fy ĵ)−(n1 fx +n2 fy)(n1î+n2 ĵ) (A2)

or

∇ f =( fx −n1(n1 fx +n2 fy))î+( fy−n2(n1 fx +n2 fy)) ĵ (A3)

where the subscripts x and y denote differentiation with respect to x and y, respectively.

A.2. Tangential Laplacian

The tangential Laplacian or Laplace–Beltrami operator of f is defined as

� f = ∇ ·∇ f

= ∇ ·∇ f −(n̂ ·∇)(∇ f ) · n̂ (A4)

In 2D, the first term in Equation (A4) is

∇ ·∇ f = ∇ ·(( fx −n1(n1 fx +n2 fy︸ ︷︷ ︸
=A

))î+( fy−n2(n1 fx +n2 fy)) ĵ)

= fxx −n1x A−n1Ax + fyy−n2y A−n2Ay (A5)

In the second term of Equation (A4)

(n̂ ·∇)(∇ f ) = n1
�
�x

( fx −n1A)î+n2
�
�y

( fx −n1A)î

+n1
�
�x

( fy−n2A) ĵ+n2
�
�y

( fy−n2A) ĵ

= (n1 fxx −n1(n1x A+n1Ax )+n2 fxy−n2(n1y A+n1Ay))î

+(n1 fxy−n1(n2x A+n2Ax )+n2 fyy−n2(n2y A+n2Ay)) ĵ (A6)

and hence,

(n̂ ·∇)(∇ f ) · n̂ = n21 fxx −n21(n1x A+n1Ax )+n1n2 fxy

−n1n2(n1y A+n1Ay)+n1n2 fxy

−n1n2(n2x A+n2Ax )+n22 fyy−n22(n2y A+n2Ay) (A7)

Combining Equations (A5) and (A7)

� f = fxx (1−n21)+ fyy(1−n22)−2n1n2 fxy−n1x A(1−n21)

−n1Ax (1−n21−n22)−n2y A(1−n22)−n2Ay(1−n21−n22)

+n1n2A(n2x +n1y) (A8)
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or

� f = n22 fxx +n21 fyy−2n1n2 fxy

−(n1 fx +n2 fy)(n
2
1n2y+n22n1x −n1n2(n2x +n1y)) (A9)

A.3. Tangential gradient and tangential Laplacian of a vector

Consider a 2D vector quantity U=uî+v ĵ . On a surface with unit normal vector n̂=n1î+n2 ĵ ,
the tangential gradient and tangential Laplacian of U are

∇U=
[
ux uy

vx vy

]
−

[
n1(n1ux +n2uy) n2(n1ux +n2uy)

n1(n1vx +n2vy) n2(n1vx +n2vy)

]
(A10)

and

�U=

⎡⎢⎢⎢⎢⎢⎣
n22uxx +n21uyy−2n1n2uxy

−(n1ux +n2uy)(n
2
2n1x +n21n2y−n1n2(n1y+n2x ))

n22vxx +n21vyy−2n1n2vxy

−(n1vx +n2vy)(n
2
2n1x +n21n2y−n1n2(n1y+n2x ))

⎤⎥⎥⎥⎥⎥⎦ (A11)
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